Corrigendum: Interferon regulatory factor 9 is critical for neointima formation following vascular injury
نویسندگان
چکیده
Interferon regulatory factor 9 (IRF9) has various biological functions and regulates cell survival; however, its role in vascular biology has not been explored. Here we demonstrate a critical role for IRF9 in mediating neointima formation following vascular injury. Notably, in mice, IRF9 ablation inhibits the proliferation and migration of vascular smooth muscle cells (VSMCs) and attenuates intimal thickening in response to injury, whereas IRF9 gain-of-function promotes VSMC proliferation and migration, which aggravates arterial narrowing. Mechanistically, we show that the transcription of the neointima formation modulator SIRT1 is directly inhibited by IRF9. Importantly, genetic manipulation of SIRT1 in smooth muscle cells or pharmacological modulation of SIRT1 activity largely reverses the neointima-forming effect of IRF9. Together, our findings suggest that IRF9 is a vascular injury-response molecule that promotes VSMC proliferation and implicate a hitherto unrecognized 'IRF9-SIRT1 axis' in vasculoproliferative pathology modulation.
منابع مشابه
Interferon Regulatory Factor 7 Protects Against Vascular Smooth Muscle Cell Proliferation and Neointima Formation
BACKGROUND Interferon regulatory factor 7 (IRF7), a member of the interferon regulatory factor family, plays important roles in innate immunity and immune cell differentiation. However, the role of IRF7 in neointima formation is currently unknown. METHODS AND RESULTS Significant decreases in IRF7 expression were observed in vascular smooth muscle cells (VSMCs) following carotid artery injury ...
متن کاملA central role of interferon regulatory factor-1 for the limitation of neointimal hyperplasia.
Neointima formation, the leading cause of restenosis after catheter angioplasty, is a paradigm for vascular proliferative responses. Neointima formation is self-limiting after a variable degree of tissue growth, causing significant renarrowing in a substantial number of patients. To investigate the mechanisms that limit neointima formation we studied the role of the transcription factor IRF-1, ...
متن کاملSDF-1α induction in mature smooth muscle cells by inactivation of PTEN is a critical mediator of exacerbated injury-induced neointima formation.
OBJECTIVE PTEN inactivation selectively in smooth muscle cells (SMC) initiates multiple downstream events driving neointima formation, including SMC cytokine/chemokine production, in particular stromal cell-derived factor-1α (SDF-1α). We investigated the effects of SDF-1α on resident SMC and bone marrow-derived cells and in mediating neointima formation. METHODS AND RESULTS Inducible, SMC-spe...
متن کاملSmooth Muscle–Selective Inhibition of Nuclear Factor‐κB Attenuates Smooth Muscle Phenotypic Switching and Neointima Formation Following Vascular Injury
BACKGROUND Vascular proliferative diseases such as atherosclerosis are inflammatory disorders involving multiple cell types including macrophages, lymphocytes, endothelial cells, and smooth muscle cells (SMCs). Although activation of the nuclear factor-κB (NF-κB) pathway in vessels has been shown to be critical for the progression of vascular diseases, the cell-autonomous role of NF-κB within S...
متن کاملTempol therapy attenuates medial smooth muscle cell apoptosis and neointima formation after balloon catheter injury in carotid artery of diabetic rats.
Accumulating data support the hypothesis that reactive oxygen species (ROS) play a critical role in the vascular complications observed in diabetes. However, the mechanisms of ROS-mediated vascular complications in diabetes are not clear. We tested the hypothesis that ROS-mediated increase in proapoptotic factor Bax expression leads to medial smooth muscle cell (SMC) apoptosis that is associate...
متن کامل